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A NOTE ON THE PAPER ENTITLED
SIXTEENTH-ORDER METHOD FOR NONLINEAR

EQUATIONS

Young Ik Kim*

Abstract. The purpose of this paper is to provide some correc-
tions regarding algebraic flaws encountered in the paper entitled
”Sixteenth-order method for nonlinear equations” which was pub-
lished in January of 2010 by Li et al.[9]. Further detailed comments
on their error equation are stated together with convergence anal-
ysis as well as high-precision numerical experiments.

1. Introduction

Iterative methods including Newton’s method, Jarratt’s fourth-order
method[3] and King’s fourth-order method[4] have been developed and
successfully applied to find a root of a given nonlinear equation. A
variety of other high-order iterative methods have been investigated by
many researchers such as Chun[1], Geum[2], Li et al.[9], Ren[6] and
Sharma[7].

Suppose that f : R → R has a simple root α and is sufficiently
smooth in an open interval D ⊆ R containing α. Li et al.[9] has recently
suggested a three-step sixteenth-order method shown below: for n =
0, 1, · · · , 




yn = xn − f(xn)
f ′(xn) ,

zn = yn − 2f(xn)−f(yn)
2f(xn)−5f(yn) ·

f(yn)
f ′(xn) ,

xn+1 = wn − 2f(zn)−f(wn)
2f(zn)−5f(wn) · f(wn)

f ′(zn) ,

(1.1)
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where wn = zn − f(zn)
f ′(zn) and x0 ∈ D is given close to α.

Although their main theorem regarding the error equation of (1.1) ap-
pears to be correct, its proof involves critical algebraic flaws in the coeffi-
cients of e5

n, e9
n, e10

n , e13
n , e14

n , e15
n associated with the expressions zn, f(zn),

f ′(zn) and f(wn). In addition, the coefficient of e4
n in the expression

2f(xn)−f(yn)
2f(xn)−5f(yn) should be corrected as (15c4

2)/4−11c2
2c3 +4c2

3 +2c2c4 +8c5,

with cj = f (j)(α)
j!f ′(α) for j = 2, 3, · · · .

Despite the presence of these faulty coefficients, the dominating term
in their error equation happens to be luckily correct, since it is depen-
dent only on the coefficients of e4

n, e8
n, e12

n in zn, f(zn), f ′(zn) and f(wn).
The details of these flaws are described in Section 2. The main aim of
this paper is to provide corrections regarding some algebraic flaws en-
countered in the paper by Li et al.[9]. To convince the analysis presented
here, some results of high-precision numerical experiments are displayed
for several test functions chosen from the paper in [9].

2. Convergence analysis

The convergence property of iterative method (1.1) is best illustrated
in Theorem 2.1 stated below:

Theorem 2.1. Let f : D ⊆ R → R with an open interval D be a

sufficiently smooth function having a real zero α ∈ D. Let cj = f (j)(α)
j!f ′(α)

for j = 2, 3, · · · . Assume that c2, c3 and c4 are not vanishing. Let
x0 be an initial guess chosen in a sufficiently small neighborhood of α.
Then iteration scheme (1.1) is of sixteenth-order and its error equation
satisfies the following:

εn+1 = Ae16
n + κe17

n + O(e18
n ), (2.1)

where A = −(c2c3)5, κ = 4(c2c3)4φ and φ = (3c4
2)/2+2c2

2c3−2c2
3−2c2c4.

Proof. Taylor series expansion of f(xn) about α up to fifth-order
terms yields with f(α) = 0:

f(xn) = f ′(α)(en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n + O(e6

n)), (2.2)

where en = xn − α for n = 0, 1, 2, · · · . For ease of notation, en will
be denoted by e (not to be confused with Napier’s base for natural
logarithms) for the time being. With the aid of symbolic computation
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of Mathematica[10], a lengthy algebraic computation induces relations
(2.3)-(2.8) below:

f ′(xn) = f ′(α)(1 + 2c2e + 3c3e
2 + 4c4e

3 + 5c5e
4 + O(e5)), (2.3)

f(xn)
f ′(xn)

= e− c2e
2 + 2λe3 + A1e

4 + A2e
5 + O(e6), (2.4)

where λ = c2
2 − c3, A1 = −4c3

2 + 7c2c3 − 3c4, A2 = 8c4
2 − 20c2

2c3 + 6c2
3 +

10c2c4 − 4c5.

yn = xn − f(xn)
f ′(xn)

= α + c2e
2 − 2λe3 −A1e

4 −A2e
5 + O(e6), (2.5)

f(yn) = f ′(α)
(
c2
2e

2−2λe3+(c3
2−A1)e4+(−A2−4λc2

2)e
5+O(e6)

)
. (2.6)

f(yn)
f ′(xn)

= c2e
2 + (−4c2

2 + 2c3)e3

+ (13c3
2 − 14c2c3 + 3c4)e4 + B5e

5 + O(e6),
(2.7)

where B5 = −38c4
2 + 64c2

2c3 − 12c2
3 − 20c2c4 + 4c5.

2f(xn)− f(yn)
2f(xn)− 5f(yn)

= 1 + 2c2e + (−c2
2 + 4c3)e2

+ (−3c3
2/2 + 6c4)e3 + B4e

4 + O(e5),
(2.8)

where B4 = (15c4
2)/4− 11c2

2c3 + 4c2
3 + 2c2c4 + 8c5.

Consequently, we have after substituting λ,A1, A2, B4 and B5:

zn = yn − 2f(xn)− f(yn)
2f(xn)− 5f(yn)

· f(yn)
f ′(xn)

= α− c2c3e
4 + φe5 + O(e6), (2.9)

where φ = 3c4
2/2 + 2c2

2c3 − 2c2
3 − 2c2c4.

Letting τ = zn − α (n = 0, 1, 2, · · · ) and Taylor series expansion of
f(xn) about α yields with en replaced by τ in (2.2) and( 2.3):

f(zn) = f ′(α)(τ + c2τ
2 + c3τ

3 + c4τ
4 + c5τ

5 + O(τ6)), (2.10)

f ′(zn) = f ′(α)(1 + 2c2τ + 3c3τ
2 + 4c4τ

3 + 5c5τ
4 + O(τ5)), (2.11)

f(zn)
f ′(zn)

= τ − c2τ
2 + 2λτ3 + A1τ

4 + A2τ
5 + O(τ6), (2.12)

wn = zn − f(zn)
f ′(zn)

= α + c2τ
2 − 2λτ3 −A1τ

4 −A2τ
5 + O(τ6). (2.13)
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Similarly, replacing en by wn − α in (2.2) and( 2.3)yields:

f(wn) = f ′(α)(c2τ
2 − 2λτ3 + (−A1 + c3

2)τ
4

+ (−A2 − 4c2
2λ)τ5 + O(τ6)),

(2.14)

f(wn)
f ′(zn)

= c2τ
2 + (−4c2

2 + 2c3)τ3

+ (13c3
2 − 14c2c3 + 3c4)τ4 + B5τ

5 + O(τ6),
(2.15)

2f(zn)− f(wn)
2f(zn)− 5f(wn)

= 1 + 2c2τ + (−c2
2 + 4c3)τ2

+ (−3c3
2/2 + 6c4)τ3 + B4τ

4 + O(τ5).
(2.16)

Hence the third equation of (1.1) leads us to the relation below:

en+1 = xn+1 − α = wn − α− 2f(zn)− f(wn)
2f(zn)− 5f(wn)

· f(wn)
f ′(zn)

= −c2c3τ
4 + φτ5 + O(τ6).

(2.17)

Substituting τ = zn − α = −c2c3e
4 + φe5 + O(e6) into (2.17) yields the

desired relation below with e denoted by en:

εn+1 = Ae16
n + κe17

n + O(e18
n ), (2.18)

where A = −(c2c3)5, κ = 4(c2c3)4φ and φ = (3c4
2)/2+2c2

2c3−2c2
3−2c2c4,

from which the proof is completed.

It is worth to observe that

A = lim
n→∞

en

en−1
16

and

κ = lim
n→∞

en −Aen−1
16

en−1
17

.

Note that η = |A| is known as the asymptotic error constant. As a result
of the above theorem, some faulty coefficients of e5

n, e9
n, e10

n , e13
n , e14

n , e15
n

have been found in equations (15)-(18) of the paper by [9]. Those faulty
coefficients should be corrected as shown in Table 1. The following
remarks deserve special attention.

Remark 2.2. (1) If the coefficient φ of e5
n in (2.9) were chosen as

ρ = −73c4
2/2 + 66c2

2c3 − 14c2
3 − 22c2c4 that Li et al. used, then the

coefficient of e17
n in (2.18) would be 4(c2c3)4ρ.

(2) The coefficient of A e16
n in (2.18) remains unchanged as Li et al.

suggested, for it depends only on the coefficients of e4
n, e8

n, e12
n in the

expressions zn, f(zn), f ′(zn) and f(wn).
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Table 1. Corrected coefficients of ek
n for k = 5, 9, 10, 13, 14, 15

Expression e5
n e9

n e10
n e13

n e14
n e15

n

zn φ N/A N/A N/A N/A N/A
f(zn) φ −2c2

2c3φ c2φ
2 3c2

2c
3
3φ −3c2c

2
3φ

2 c3φ
3

f ′(zn) 2c2φ −6c2c
2
3φ 3c3φ

2 12c2
2c

2
3c4φ −12c2c3c4φ

2 4c4φ
3

f(wn) N/A −2c2
2c3φ c2φ

2 −6c2
2c

2
3λφ 6c2c3λφ2 −2λφ3

Here λ = c2
2 − c3, φ = 3c4

2/2 + 2c2
2c3 − 2c2

3 − 2c2c4 and N/A = not applicable.

3. Algorithm, numerical results and discussions

The analysis described in Section 2 allows us to develop a zero-finding
algorithm to be implemented with Mathematica:

Algorithm 3.1 (Zero-Finding Algorithm)
Step 1. Construct iteration scheme (1.1) with the given function f hav-
ing a simple zero α for n ∈ N ∪ {0} as mentioned in Section 1.
Step 2. Set the minimum number of precision digits. With exact or
most accurate zero α, supply the theoretical asymptotic error constant
η = |A|, order of convergence p as well as c2, c3, c4 and c5 stated in Sec-
tion 2. Set the error bound ε, the maximum iteration number nmax and
the initial guess x0. Compute f(x0) and x0 − α.
Step 3. Tabulate the computed values of n, xn, en = xn−α, en

en−1
p , A,

en−Aen−1
p

en−1
p+1 and κ.

Throughout the numerical experiments, the minimum number of pre-
cision digits was properly chosen by specifying Mathematica command
$MinPrecision within the range of 800 and 1500, being large enough to
minimize round-off errors as well as to clearly observe the computed as-
ymptotic error constants requiring small-number divisions. A constant
error bound ε = 0.5×10−300 was used in the current experiments for rel-
atively accurate computation to verify the convergence order of 16. The
values of initial guess x0 were selected close to α in order to guarantee
convergence. The computed asymptotic error constant or coefficients of
the error equation (2.1) appear to agree up to 10 significant digits with
the theoretical ones. The computed zeros are actually rounded to be
accurate up to the 300 significant digits, although displayed only up to
15 significant digits. In case that the exact value of α is not available, it
is computed with Mathematica command FindRoot to have accuracy of
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700 significant digits, while being listed up to 15 significant digits due
to the limited paper space.

Three test functions f(x) = (x − 1)3 − 1, f(x) =
√

x2 + 2x + 5 −
sinx−x2 +3 and f(x) = lnx+

√
x−5 are selected from the paper[8] for

numerical experiments to be implemented with iteration scheme (1.1).
As expected, the computational results clearly show coefficients A, κ and
asymptotic error constants η = |A| with sixteenth-order convergence.
Tables 2, 3 and 4 list iteration indexes n, approximate zeros xn, errors
en = xn − α and en

en−1
16 as well as A plus en−Aen−1

16

en−1
17 and κ.

Table 2. Convergence for f(x) = (x− 1)3 − 1 with α = 2

n xn en = xn − α en
en−1

16 A
en−Aen−1

16

en−1
17 κ

0 1.8 0.2 -0.00411522633 0.0960219478
1 1.99999999999700 -2.99×10−12 -0.4576767021 2.267807379

2 2.00000000000000 -1.76×10−187 -0.00411522633 0.0960219478
3 2.00000000000000 0.×10−749

Table 3. Convergence for f(x) =
√

x2 + 2x + 5−sinx−
x2 + 3 with α ≈ 2.33196765588396

n xn en = xn − α en
en−1

16 A
en−Aen−1

16

en−1
17 κ

0 1.8 0.531968 -8.814878861×10−11 -7.912879308×10−10

1 2.33196765588396 -1.35×10−18 -3.302562913×10−14 -1.656412040×10−10

2 2.33196765588396 -1.18×10−296 -8.814878861×10−11 -7.912879308×10−10

3 2.33196765588396 -6.98×10−1013

Table 4. Convergence for f(x) = lnx +
√

x − 5 with
α ≈ 8.30943269423157

n xn en = xn − α en
en−1

16 A
en−Aen−1

16

en−1
17 κ

0 7.0 1.30943 3.599254246×10−20 -2.753290168×10−20

1 8.30943269423157 8.14×10−18 1.090749998×10−19 -5.581230532×10−10

2 8.30943269423157 1.35×10−293 3.599254246×10−20 -2.753290168×10−20

3 8.30943269423157 -1.61×10−1011

A careful inspection of Tables 2-4 clearly shows that theoretical val-
ues of κ have been observed. Hence the error equation defined by (2.1)
well reflects the validity of the current analysis. In a sense of confirming
high-order convergence, it is more appealing than that of the paper by
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Li et al.[9] who used only 17 digits of precision. Li’s numerical exper-
iments seem to require a large number of precision digits for verifying
16th-order convergence. Besides that, a software program such as Maple
or Mathematica capable of doing arbitrary-precision arithmetic is much
more appropriate in confirming high-order convergence rather than Vi-
sual C++ 6.0 dealing with at most long double precision (equivalent to
approximately 17 decimal digits).
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